1959年,Richard P Feynman(1965年諾貝爾物理獎獲得者)就提出了微型機械的設想。1962年一個硅微型壓力傳感器問世,其后開發出尺寸為50~500μm的齒輪、齒輪泵、氣動渦輪及聯接件等微機械。1965年,斯坦福大學研制出硅腦電極探針,后來又在掃描隧道顯微鏡、微型傳感器方面取得成功。1987年美國加州大學伯克利分校研制出轉子直徑為60~12μm的利用硅微型靜電機,顯示出利用硅微加工工藝制造小可動結構并與集成電路兼容以制造微小系統的潛力。


工藝基準 零件在加工和裝配過程中所使用的基準,稱為工藝基準。工藝基準按用途不同又分為裝配基準、測量基準及定位基準。
(1)裝配基準 裝配時用以確定零件在部件或產品中的位置的基準,稱為裝配基準。
(2)測量基準 用以檢驗已加工表面的尺寸及位置的基準,稱為測量基準。如圖32-2中的零件,內孔軸線是檢驗外圓徑向跳動的測量基準;表面A是檢驗長度L尺寸l和的測量基準。
(3)定位基準 加工時工件定位所用的基準,稱為定位基準。作為定位基準的表面(或線、點),在一道工序中只能選擇未加工的毛坯表面,這種定位表面稱粗基準.在以后的各個工序中就可采用已加工表面作為定位基準,這種定位表面稱精基準。


金剛石刀具切削較硬的材料時磨損較快,如切削黑色金屬時磨損速度比切削銅快104倍,而且加工出的工件的表面粗糙度和 幾何形狀精度均不理想。 超精密磨削 但磨削加工后,被加工的表面在磨削力及磨削熱的作用下金相組織要發生變化,易產生加工硬化、淬火硬化、熱應力層、殘余應力層和磨削裂紋等缺陷。 超精密磨削 用修整過的砂輪在精密磨床上進行的微量磨削加工,金屬的去除量可在亞微米級甚至更小,可以達到很高的尺寸精度、形位精度和很低的表面粗糙度值。